The geometry of mixed-Euclidean metrics on symmetric positive definite matrices
نویسندگان
چکیده
Several Riemannian metrics and families of were defined on the manifold Symmetric Positive Definite (SPD) matrices. Firstly, we formalize a common general process to define metrics: principle deformed metrics. We relate recently introduced family alpha-Procrustes class mean kernel by providing sufficient condition under which elements former belong latter. Secondly, focus balanced bilinear forms that introduced. give new form is metric. It allows us introduce Mixed-Euclidean (ME) generalize Mixed-Power-Euclidean (MPE) unveal their link with (u,v)-divergences (α,β)-divergences information geometry provide an explicit formula Riemann curvature tensor. show sectional all ME can take negative values experimentally MPE but log-Euclidean, power-Euclidean power-affine positive values.
منابع مشابه
Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization
In many engineering applications that use tensor analysis, such as tensor imaging, the underlying tensors have the characteristic of being positive definite. It might therefore be more appropriate to use techniques specially adapted to such tensors. We will describe the geometry and calculus on the Riemannian symmetric space of positive-definite tensors. First, we will explain why the geometry,...
متن کاملRiemannian geometry on positive definite matrices
The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function φ in the form K D(H,K) = ∑ i,j φ(λi, λj) −1TrPiHPjK when ∑ i λiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7→ ...
متن کاملWasserstein Riemannian Geometry of Positive-definite Matrices∗
The Wasserstein distance on multivariate non-degenerate Gaussian densities is a Riemannian distance. After reviewing the properties of the distance and the metric geodesic, we derive an explicit form of the Riemannian metrics on positive-definite matrices and compute its tensor form with respect to the trace scalar product. The tensor is a matrix, which is the solution of a Lyapunov equation. W...
متن کاملDDtBe for Band Symmetric Positive Definite Matrices
We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...
متن کاملDeconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and Its Applications
سال: 2022
ISSN: ['1872-6984', '0926-2245']
DOI: https://doi.org/10.1016/j.difgeo.2022.101867